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ABSTRACT 

We show, for any operator T from a C(K)-space into a Banach space with 
rank(T) _< n, the inequality 

Irp(T) -<C(1 +logn)l-I/Plrp, l(T), 1 < p <  0% 

where C _< 4.671 is a numerical constant. The factor (1 + log n) I-I/p is asymptot- 
ically correct. This inequality extends a result of Jameson to p ~: 2. Several appli- 
cations are given-one is a positive solution of a conjecture of Rosenthal and 
Szarek: For 1 < p  < q < 2, 

sup llT@S:lg @q t~ ~ t ~  ®p J,71[ ~ (I + )ogn) 1/". 

IS : lg~/ /~ l  <-1 

1. Introduction 

We recal l  s o m e  bas ic  de f in i t i ons .  T h e  B a n a c h  space  o f  all  ( b o u n d e d  l inear )  op-  

e r a to r s  f r o m  a B a n a c h  space  E in to  a B a n a c h  space  F is d e n o t e d  by ~3 (E ,  F ) .  We  

say  an  o p e r a t o r  T E  ~ ( E , F )  is ( r , p ) - s u m m i n g ,  1 _< p _< r _< oo, i f  t he re  is a con-  

s tan t  a _> 0 such  tha t  

(~,=, "~x~ ')r) ' ~r -< ° ,a,:lSU" ',=,/~ '<x,, °> J P) '~ 

fo r  all  f in i te  fami l i es  Xl . . . . .  Xm E E .  P u t  

7rr, p(T)  : =  i n f o ,  
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then the class of all (r,p)-summing operators forms a Banach ideal [(~r,p,'lrr, p]. 
For r = p we have the Banach ideal [(Pp, ~rp] of p-summing operators. Further- 

more, in this paper C ( K )  denotes the Banach space of continuous functions over 

a compact Hausdorff space. Moreover, Lp, q(/~) and lp, q denote the well-known 

Lorentz function and sequence spaces, respectively, with the abbreviations Lp "= 

L p ,  p and lp := lp, p for q = p. Pisier's factorization theorem of (p, 1)-summing op- 

erators on C(K)-spaces states that such an operator can be factored through the 

embedding operator from C(K)  into the Lorentz space L,,~ (K, #), for some prob- 

ability measure # on K. This result corresponds to the Grothendieck-Pietsch fac- 

torization theorem for p-summing operators. A result of Maurey (Lemma A in 

section 2) states that each (p,1)-summing operator from a C(K)-space into a 

Banach space is r-summing for r > p. This result may also be checked by Pisier's 

factorization theorem. It is natural to ask what is the ratio in the limit case r = p 

of the p- and (p, 1)-summing norm of finite rank operators from C(K)-spaces. The 

answer is given by the inequality stated in the abstract (Theorem 1 in section 2). 

This inequality has useful applications. So we prove a precise version of a result 

of Saphar [Sa] for finite rank operators from L~ (/~) into Lp(v) ,  2 < p < 0% by 

using Theorem 1 and a result of Schechtman IS]. Furthermore, we provide asymp- 

totically optimal estimates between (q,p)-mixing and (r,p)-summing norms of fi- 

nite rank operators between arbitrary Banach spaces (Proposition 3 in section 3.2). 

Moreover, we answer a conjecture of Rosenthal and Szarek [R-S] in the positive 

(Proposition 4 in section 3.3). Finally, according to the pattern of Tomczak- 

Jaegermann [T] we may even show the inequality 

7 r p ( T )  < C p ( 1  + log "~l-l/P-tn)l'r~ - -  , i !  IIp, l ~ 1 ,  

for rank n operators from C(K)-spaces in the case p > 2, where in) _ 7rp.~ (T) stands 

for the (p, 1)-summing norm of operators generated by n-vectors. For more details 

we refer to the final remarks. 

2.  T h e  m a i n  t h e o r e m  

The main result of the paper is stated in the following theorem. 

THEOREM 1. Let 1 < p < oo and let n be any natural number. Then for  all 

operators T E ~ ( C ( K ) , E )  f r o m  a C(K)-space  into a Banach space E with 

rank(T) _< n, 

7rp(T) <_ C(1 + logn)l-l /Plrp.l(T),  

where C <_ 4.671 is a numerical constant. 



Vol. 74, 1 9 9 1  INEQUALITY OF FINITE RANK OPERATORS 325 

REMARKS. (i) The special case p = 2 is due to Jameson [J], but his method does 

not work for p ~: 2. 

(ii) A modification of the example in Jameson [J] (cf. Montgomery-Smith [Mo]) 

shows that the factor (1 + log n)  ~-~/p appearing in the above inequality is asymp- 

totically correct for 1 < p < oo: Indeed, 

and 

7rp(In: l ~ ~ 17,,1) X n~/P(1 + log n) l-I/p 

"trp.l ( ln : ! n -+ lff, i) ~ n I/p, 

where I ,  denote the identity operators. 

For the proof of Theorem 1 we need two ingredients. The first one is a result 

of  Maurey (cf. also Pisier [P]) and the second one is implicitly contained in [CI. 

LEMMA A (Maurey [MID. Let  1 <_ p < r <_ oo and  let T E 6 ) p , I ( C ( K ) , E ) .  

Then 

I ' ( l  - r ' / p ' )  l/r' 
7r,(T) <_ "Xp, i (T ) ,  

r(l/p) 

where r stands f o r  the well-known G a m m a  func t ion  and r' is the conjugate index 

to r, l / r '  := 1 - I/r. 

Since for operators from C(K)-spaces the p-summing and p-integral norms co- 

incide (cf. [Pi], [TI, [D-F]) we conclude from Proposition 3' of [C] and the injec- 

tivity of the p-summing norm the following lemma. 

LEMraA B ([C]). Let  1 <_ p <_ r < oo and let T E £ ( C ( K ) , E )  be an operator 

with rank(T) <_ n. Then 

"xp(T)  <- nmax(r ' /2" l ) (J /P- l / r ) 'xr(T) .  

PROOF OF THEOREM 1. Given T E  £ ( C ( K ) , E )  with rank(T) _< n. Combining 

Lemmas A and B we get 

I' (1 - r' / p ' )  l/r"., max(r'/2, I ) ( I /p- l / r )_  
r (1 /p )  . . . .  p,j(T) for 1 < p  < r _< oo. ~p(T) <_ 

Note that 

r(1 p,r J" (I P'r l" 2  P'r  r (1 P Jr' Jr'(1 
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for 1 < r' < p '  < oo and 

£ ( 1 ) = p £ ( l + p l - )  >-pl<p<o,inf £ ( 1 + 1 ) =  p - , \  a 

where a = 1.129 . . . .  Hence 

~rp(T) <- fp, n(r)~rp, l (T )  

with 

: _ __ r l m a x ( r ' / 2 , 1 ) ( l / p -  I/r) 
f p . . ( r )  P 

Choose r such that 

P 

1 1 1 1 

r r' p '  max(p ,p ' )  
• (1 + l o g n )  - l .  

Then 

1 1 1 1 
- - < - - _ < - - +  __1, 
p '  r '  p '  max(p ,p ' )  

so that 

fp , . ( r )  = a_ (max(p,p,)) l /~,  (1 + log n)l/r,n[maxCr,/2.1)/maxtp, p,)].{t+log.)-, 
P 

a (max(p,p'))  l / p ' + l / m a x ( p ' P ' ) e  l/e max (p ,p ' ) emax (p ' / 2 ,1 ) /max (p ,p ' )  < . - -  

P 

x (1 + logn) ~/p'. 

Therefore, the estimates 

1 1 max(p,p,)l/p,+l/maxcp, p, ) <_ _ max(p ,p , ) l /p ,e l / e  < max(l,el/e)el/e < e2/e, 
P P 

e max(p ' /2 ,1) /max(p ,p ' )  <_ e 1/2 and e l / emax(p 'p ' )  ~ e I/2e 

imply the desired inequality 

top(T) < C(1 + logn)l-l /olrp,  l ( T ) ,  

where C < a . e  5/2e+1/2 < 4.671. • 
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3. Applications 

We now deal with several applications of Theorem 1. 

3.1. On a result o f  Saphar 

A result of Saphar [Sa] states that each operator T E  ~(Ll  (#),Lp(p)), 2 < p < 
co, is q-summing for q > p. In this section we consider the limit case q = p. For 

doing this we recall r-stable random variables, 1 < r < 2. A random var iablef  is 

said to be r-stable if its Fourier transform is equal to e - I t : .  By (fk) we denote a 

sequence of independent r-stable random variables defined on the interval [0,1] 

with the Lebesgue measure. It is well known that 

(~0 k=ll ~ Set )I/s (k~= l r)I/r ]bk[ for 1 _<s< r <  2, bkfk(t)  = ar.s 

where ar, s is a constant depending on r and s. This equation means that 1 m can be 

isometrically embedded into Ls[0,1] for 1 < s < r < 2. Moreover, 

( fo  k=l ~ ' fk(t)lr) I / rd t>c( l  -t-logn)l/rnl/r' 

where c > 0 is a positive constant (cf. [M-P],[T]). 

PROPOSmON 2. (i) Let 2 < p < co and let n be any natural number. Then for 

all operators T E ~(L l  (#),Lp(p)) with rank(T) < n, 

xptT) < C.(1 + logn)~-~/PllTll, 

where Cp is a constant depending only on p. 
(ii) For 2 < p < co there exists a sequence o f  operators 

Tn E £ ( L I  [0,1],lp) with rank(Tn) -< n 

such that 

lrp(Tn) > Cp(1 + logn) l-l/p and 

where Cp > 0 is a constant depending only on p. 

IlTnll l, 

PROOF. (i) First we show for operators T E  £ ( L l ( # ) , l ~ ) ,  

~rp(T) < 2C(1 + logm)H/'l[Tl[,  

where C is the constant of Theorem 1. Indeed, the p'-stable random variables pro- 

vide a metric injection J from ! 3 into LI [0,1]. Thus Q := J '  defines a metric sur- 
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jection from L**[0,1] onto 1~'. By the metric lifting property of  L~ (g) we may 

factorize each operator T as follows: 

L~,[O, tl 

Y l  o 
Li (g) r , l~" , 

where Tis  an operator with [[TII -< 2IITU- Applying Theorem 1 we infer 

rafT)  -< IITII rp(Q) -< 2IITII rp(Q) 

-< 2CIITll (1 + logm)H/Prp, l(O). 

Because of  

and 

~p.l(Q) <- IIQU~rp,~(Im:l~'- ' i~')  < ~p,,(l~:li-.lI) 

r u . t ( l m : l ~ - ~ l ~ )  = 1 

(cf. [K],[Pi],[T]) we get the desired inequality. Now let T 6  £ ( L l  (g),Lp(v))  with 

rank(T) _< n. Put En := T(Lt).  Then d imE.  _< n and we have, for the operator 

To:Ll (g)  -- .E. induced by T, that a'p(T) = ~rp(To) and IITII -- IIToll. By a result 
of  Schechtman [S] (cf. also Bourgain/Lindenstrauss/Milman [B-L-M]) we may 
embed E.  2-isomorphically into an 1~' with m <_ K(p)n l+p/2. Hence, 

,rp(T) = ~rp(To) <- 2Ta(J.To), 

where J .  is the 2-isomorphic embedding from E.  into I~'. By the first step of  the 

proof  we conclude that 

Therefore 

From 

~rp(JnTo) < 2C(1 + logm)l-l/p[IJ~To[ I 

< 2 C ( 1  + logm)~-~/plITll. 

7rp(T) <_ 4C(1 + log m)'-t/P[[TII. 

log rn _< log K ( p )  n l +a/2 __% max(log K(p) ,  p/2) ( 1 + log n ) 
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we finally get the desired estimate 

7rptT) <_ Cp(1 + log n)H/PlITII, 

where Cp < 4C(1 + max(log K(p) ,p /2 ) )  1-1/p. 
For the proof of (ii) we follow a similar idea of Kwapien (cf. IT]). Let (fk)~*=l 

be a sequence of independent p'-stable random variables. For each n we may find 

g~") . . . . .  g~) E L®[0,1] such that 

n 

sup Y], Ig~n~(t)l p = 1 
t~E [0, I ] k=l 

and 

Ifk(t)l p' = fk(t)gtg")(t) dt . k=l 
Define operators A .  : lp, --. LI [0,1] and T. : Ll [0,1] --* lp by 

A , x  := ~ <x, ek>fk, x ~_ lp,, k=l 
and 

T . f : =  ~ <f,g~")}ek, f E  L,[0,1], 
k = l  

respectively. Obviously, 

I Ih .  : Zp, - ,  t ,  [0,1] II -< ap.~ 

On the other hand we get 

and IIT,:L~[O,1] ~lpl[ <-- 1. 

f0( cn l/P'(1 + log n) l/p" < ~,, IA(t)l p'V/p' - k=l  ) dt 

= fOlk~_lfk( t ,gtkn)( t )dt]:  k=~(fk,g~m)] 

(~_] )l/p (~=1 ~. ] )l/p <nt/ ."  I<A,gt,")>lp < hi*" I<fk,g~"J>lp k=l I=1 

( <_ n~/p' ~. IIr.a.ekll p <_ n~/P'r . (T.A.)  k=l 
<_ nl/P'rp(T.)llA.II <_ n~/,'%(T.)a,;~. 
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which yields the desired assertion (ii), 

C 
7rp(Tn) > (1 + l o g n )  I-~/p and IITnll-< 1. [] 

ap;i 

3.2. Inequalities between (q,p)-mixing and (r,p)-summing norms o f  f inite 

rank operators 

Let 1 _< p ,q  <__ oo. An operator T E £ ( E , F )  from a Banach space E into a 

Banach space F is said to be (q,p)-mixing if for all Banach spaces G and all op- 

erators S E (Pq(F, G) the composition operator S T  is p-summing. Put 

~q.p(T) := sup[Trp(ST) : Trq(S) < II .  

Then the class [~q,p, ].l,q,p] of  all (q,p)-mixing operators is a Banach ideal (cf. 

[Pi], [D-F]). We now recall some properties about (q,p)-mixing operators, most 

of  which can be found at least implicitly in Maurey's thesis [M2]. The theory of  

these operators appeared in a condensed form in Pietsch [Pi] and Puhl [Pu] (see 

also [D-F]). 
By definition we obviously have 

= [ z , t l .  11] 

and 

for l _ < q < p _ <  ~ ,  

[~=,p,/Z=,p] = [(Pp, a'p], 1 _< p < oo. 

Furthermore,  if 1/r + 1/q = l /p,  then 

[(~r,q,-ifr, q].  [~q,p,~q,p] (:7. [(~s,p,Tfs,p ] 

for 1 _< p _< q ___ oo and 1/p - 1/s = 1/q - 1/r. The special case r = q, s = p comes 

out from the definition. For our purposes we also need the following character- 

ization: An operator T E £ ( E , F )  is (q,p)-mixing iff  for all C(K)-spaces, K a 

compact Hausdorff  space, all operators S E (Pp, ( C ( K) ,  E)  the composition oper- 

ator TS is q'-summing, and in this case 

I~q,p(T) --- sup{ Trq,(TS) : lru,(S ) <_ 1}. 

For  p = 1 we have 

[9~q.l (C(K) ,E) , i tq . i ]  = [(Pq,(C(K),E),  rq,]. 
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The next result (again due to Maurey [M2]) shows that the (q,p)-mixing and (r,p)- 

summing operators are closely related: Namely, if 1/r + l /q = I/p, then 

[~f~q,p,l, tq.p] {:7. [(~lr, p, Tfr, p] and (Pr, p C-- ~ q - , , p  f o r e > O .  

It is natural to ask: what is the ratio between the (q,p)-mixing and (r,p)-summing 

norm of finite rank operators in the "border case" e = 0 and 1/r + 1/q = 1/p? We 

prove the following statement, which is useful for investigating norms of  tensor 

product operators. 

PROeOSITIOr; 3. Let 1 <_ p <_ q <_ co and 1/r + 1/q = 1/p. Then for  any natural 

number n and any operator T E ~ ( E , F )  between arbitrary Banach spaces E and 

F with rank(T) <__ n, 

#q,p(T) <__ C(1 + log n)l/qlrr, p (T) ,  

where C is the numerical constant f rom  Theorem 1. 

PROOF. Let S E 6~p, ( C ( K ) , E )  be an arbitrary p'-summing operator from a 

C(K)-space into E. By Theorem 1 we have 

"Xq,(TS) < C(1 + logn)l/q'xq;l(TS). 

Using the above product formula 

lrq;l(TS) < "Xr, p(T)#p,l ( S) ,  

and 

we check 

1/r + 1/q = l /p  

~p,~(S) <_ 7rp,(S) 

"lFq,(TS) < C(1 + logn)l/%rr, p (T ) rp , (S ) .  

Thus, the above characterization of (q,p)-mixing operators yields 

p.q,p(T) = sup[ Trq,(TS) : Trp,(S) <_ 1} < C(1 + log n)l/q'xr, p (T)  

for 1/r + l /q = 1/p. 

REMARK. The factor (1 + log n) ~/q in the inequality of  Proposition 3 is asymp- 

totically correct at least in the cases I = p < q < co and 1 < p < q < 2, respectively. 

Indeed, if 1 -- p < q < co, then the inequality of  Proposition 3 reduces to the in- 
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equality of Theorem 1 since ~q,i (T: C ( K )  -o E)  = "Xq,(T: C(K)  -~ E) .  In the case 

1 < p < q < 2 we have with a constant Cp, q > O, 

#q,p(In:l~,--*i~,) > Cp, q(1 + logn)  I/a and "Xr, p(In:l~,-ol~,) = 1, 

1/r + 1/q = 1/p (see [Pi]). Yet we do not know whether the factor (1 + log n) I/q 

is asymptotically correct in the remaining cases 1 < p < 2 < q < o® and 2 _< p < 

q < 0% respectively. 

3.3. Tensor products 

Investigating tensor product operators between Lp-spaces, Rosenthal and 

Szarek [R-S] proved that for 1 _< p < q < 2, 

t~(p,q)  := sup IIS® r:zg @qtg- t  ®pt ll--- Cu, q(1 + logn)  I/q, 
Hs:Jg-~tr.l<-I 
IIr:t~tglsl 

where Cp, q > 0 is a constant depending on p and q only. Here the norm on the 

tensor product i,~ ®a lff is the norm induced from l~ 2. They conjectured that 

tn(p ,q)  ~ (1 + logn)  ~/q, 

which will be answered in the positive. Our proof is based on the following inequal- 

ity taken from [D-F] (which is a slight modification of a result in [C-D]). 

n n LEMMA C. Le t  1 <_ p ,  q <_ oo and let S, T E ~ ( l~ , l~ ). Then 

IIS ® T: !~ ®q ig ~ l~ ®p lffll -< ~s.p(S')~s.q,(T) 

Let 1 _ < p < q < 2 .  Then 

tn(p ,q)  ~ (1 + logn) ~/a. 

PRooF. It remains to show the estimate from above. By Proposition 3 we have 

tZq, p(In:l,~,~l~t, ) <_ C(1 + logn)l/q~rr, p ( In : l~ ,~ l~  ,) 

for 1/r + 1/q = l/p. Moreover, 7rr, p -< "Jrq,,i and 

lrq,, l(I .:l~,~i~,) = 1 

(see [K], [Pi] or [T]) imply 

#q,a(In:l~,-~l~,) <- C(I + logn)  I/q. 

for  all 1 <_ s <_ oo. 

PROPOSITION 4. 
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Choosing s = q in Lemma C we obtain 

IIS ® T:ig ®q l~-,  ! 7, ®p/fill -< #q,p(S')#q,,q, tT) 

= IlZll~q.p(S') <-IlZll IIS'll~q.p(I,:l~,-,iq,) 

C(1 + log n)l'qllSII IITII. 

Hence 

tn(P,q) <-- C(1 + logn) ~/q, 

the desired estimate from above. 

3.4. Final remarks 

In the study of  (p, q)-summing norms of finite rank operators the following re- 

finement of  the definition is useful. Let 1 __< q _< p < oo and let n be a positive in- 

teger, ~rp(,"~(T) of  an operator T E ~ ( E , F )  is the smallest C _> 0 such that for 

arbitrary n-vectors Xl . . . . .  x ,  E E one has 

<  su0 a ,  ''q 
j=! Ilal <1 j=l 

The following inequality, 

~p,2(T) < ~/27rp(,~)(T), 

is due to Tomczak-Jaegermann for p = 2 and has been extended by K~nig to p > 

2 with a constant Cp depending on p on the right-hand side of  this inequality. 

Szarek showed that the constant Cp is independent o fp .  However, the final con- 

stant ~/~ has recently been obtained by Defant/Junge [D-J] using a clever charac- 

terization of  (p,q)-summing operators as a quotient formula. Applying this 

inequality we get from Theorem 1, according to the pattern of  Tomczak-Jaeger- 

mann [T], that 

(*) ~rp(T) <_ C - (1 + log n)l-'/Pr(p3)(r), p > 2, 

for rank n operators from a C(K)-space. In the limit casep = 2 we even get an im- 

provement of  Jameson's result 

7r2(T ) _< C(1 + log rt)l/2r2t.q)(T) 
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which is a consequence of  Tomczak-Jaegermann 's  inequalities 

7r2(T) -< ~ r 2 ( ' ) ( T )  

and 

7r2(")(T) _ C(1 + log n)l/2r(2,nl)(T), 

hence it is due to Tomczak-Jaegermann [T]. Finally, we should mention that in the 

case 2 < p < oo we may also give an alternative proof  of  the inequality (*) using 

Maurey's  result and the recent result of  Defant /Junge [D-J] instead of Lemma B. 

Namely,  for rank n operators f rom C ( K ) ,  the inequality (*) follows by combin- 

ing the inequalities 

< a 7r,,2 ( T ) ,  

/rr,2(T ) < 42rr(,~l(T), 

(n) ~ l / r - l /p_  (n) ( T )  , 7rr, 2 ( T )  < - .  ap, 2 

(,,) C [ 1 1 \-~/a" (") tT~ 
~p.2 ( r )  ~ ~- \ ~ - ~ )  ~,,, , - , ,  

2 _ _ _ r < p < o o  

2_<r_< oo 

2 < _ r < _ p <  oo 

2 < p < o o  

(Maurey), 

(Defant /Junge) ,  

(Hflder ' s  inequality), 

(Maurey, Tomczak- 

Jaegermann),  

and by choosing again an appropriate  r, 1/r  = l / p  + (1/2 - l /p)(1  + logn)  -~, 

similar as in the proof  of  the main theorem. However,  we do not know whether 

the inequality (*) remains valid for 1 < p < 2. 
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