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ABSTRACT
We show, for any operator T from a C(K)-space into a Banach space with
rank(7T’) < n, the inequality

1,(T) = C(1 + logn)! "7, ((T), 1<p<o,

where C < 4.671 is a numerical constant. The factor (1 + log n)!~'”? is asymptot-
ically correct. This inequality extends a result of Jameson to p # 2. Several appli-
cations are given—one is a positive solution of a conjecture of Rosenthal and
Szarek: For l = p<g<2,
sup [T®S:HF Q710 ®, 145 R {1 +logm)2.
V7:4f -5k =<1
1S:45 15 1=1

1. Introduction

We recall some basic definitions. The Banach space of all (bounded linear) op-
erators from a Banach space E into a Banach space F'is denoted by £(E, F). We
say an operator T € L£(E,F) is (r,p)-summing, 1 < p < r < o, if there is a con-
stant ¢ = 0 such that

m 1/r
(z uTx,»u') < o sup (
i=1

Jal=1

m 1/p
|<x,-.a>l”)
i=1

i=

for all finite families x|, ...,x,, € E. Put

7, ,(T) :=inf g,
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then the class of all (r, p)-summing operators forms a Banach ideal [®, ,, 7, ,].
For r = p we have the Banach ideal [®,,7,] of p-summing operators. Further-
more, in this paper C(K) denotes the Banach space of continuous functions over
a compact Hausdorff space. Moreover, L, ,(¢) and /, , denote the well-known
Lorentz function and sequence spaces, respectively, with the abbreviations L, :=
L, ,and [, =1, , for g = p. Pisier’s factorization theorem of (p,1)-summing op-
erators on C(K)-spaces states that such an operator can be factored through the
embedding operator from C(K) into the Lorentz space L, (K, ), for some prob-
ability measure p on K. This result corresponds to the Grothendieck-Pietsch fac-
torization theorem for p-summing operators. A result of Maurey (Lemma A in
section 2) states that each (p,1)-summing operator from a C(K)-space into a
Banach space is r-summing for r > p. This result may also be checked by Pisier’s
factorization theorem. It is natural to ask what is the ratio in the limit case r = p
of the p- and (p,1)-summing norm of finite rank operators from C{K)-spaces. The
answer is given by the inequality stated in the abstract (Theorem 1 in section 2).
This inequality has useful applications. So we prove a precise version of a result
of Saphar [Sa] for finite rank operators from L, (u) into L,(v), 2 < p < o, by
using Theorem 1 and a result of Schechtman [S]. Furthermore, we provide asymp-
totically optimal estimates between (g, p)-mixing and (r, p)-summing norms of fi-
nite rank operators between arbitrary Banach spaces (Proposition 3 in section 3.2).
Moreover, we answer a conjecture of Rosenthal and Szarek [R-S] in the positive
(Proposition 4 in section 3.3). Finally, according to the pattern of Tomczak-
Jaegermann [T] we may even show the inequality

1,(T) < C,(1 + log n)! Pz \(T),
for rank n operators from C(K)-spaces in the case p = 2, where 1r,§,”1)(T) stands
for the (p,1)-summing norm of operators generated by n-vectors. For more details
we refer to the final remarks.
2. The main theorem

The main result of the paper is stated in the following theorem.

THEOREM 1. Let 1 < p < o and let n be any natural number. Then for all
operators T € £(C(K),E) from a C(K)-space into a Banach space E with
rank(T) < n,

7,(T) < C(1 + log n)!~"7x, (),

where C < 4.671 is a numerical constant.
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REMARKS. (i) The special case p = 2 is due to Jameson [J], but his method does
not work for p # 2.

(ii) A modification of the example in Jameson [J] (cf. Montgomery-Smith {Mo])
shows that the factor (1 + log n)! =7 appearing in the above inequality is asymp-
totically correct for 1 < p < oo: Indeed,

Ty (L2 1% = [2) B n'P(1 + log n)! =7
and
ML la—12)) Rn'?,
where I, denote the identity operators.

For the proof of Theorem 1 we need two ingredients. The first one is a result
of Maurey (cf. also Pisier [P]) and the second one is implicitly contained in [C].

LEMMA A (Maurey [M1]). Letl<p<r<owandletTe ®,,(C(K),E).
Then
ra-r/pH)r
(T) € ——————— T),
7 (T) T (1/p) o (T)
where T stands for the well-known Gamma function and r’ is the conjugate index
tor,1/r' :=1-1/r.

Since for operators from C(K)-spaces the p-summing and p-integral norms co-
incide (cf. [Pi], [T], [D-F]) we conclude from Proposition 3’ of {C] and the injec-
tivity of the p-summing norm the following lemma.

LemMa B ([C]). Letl<p=<r=<owandlet Te £(C(K),E) be an operator
with rank(T') < n. Then

1l’p(T) < nmax(r’/2,l)(l/p—l/r)ﬂ.r(T)‘

Proor oF THEOREM |. Given T € £(C(K), E) with rank(T) < n. Combining
Lemmas A and B we get
F(l _ rl/p/)l/r'

m(T) = T (1/p)

nmax(r'/Z,l)(l/p—l/r),’rp](T) fOl' 1 <p <r< oo,

Note that

P\ r\=-/r s \=~-1/r r\-1/r —1/r
O A A
¥4 V4 V4 b p r
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forl=r' <p’ <o and

I'(l) =pI‘<1 + 1) > p inf r(1 + 1) =P
D P lsp<oe P a

where @ = 1.129. ... Hence

Wp(T) Sfp,n(r)'n'p,l(T)

with
fp"(r) = g (l — 1>—l/r’nmax(r’/2.l)(l/p—— /)
' P\D r
Choose r such that
1 1 1 1 1
P — - (1 +logn)~".
p r rp max(pp’)
Then
1 1 1 1
=<5+ — =1
pr p max(pp’)
so that

a , , , , "w. -1
f;,’,,(") et (max(p,p ))l/r (1 ' log n)l/r n[max(r /2,1y/max{(p,p’)] - (1+logn)
a , ’ , ’ ,
< — (max(p, pr» 1/p’'+1/max(p,p )el/emax(p,p )emax(p /2,1)/max{p,p’)

x (1 + logn)'7?.

Therefore, the estimates

l max(p,pf)l/p’+l/max(p,p’) < l max(p’pr)l/p’el/e < max(l’el/e)el/e < eZ/e’
p p
emax(p’/l,l)/max(p.p’) < el/2 and el/emax(p.p') < el/Ze
imply the desired inequality

7,(T) = C(1 + log n)!~ "7z, (T),

where C < a-e°2¢*V2 < 4.671. ]
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3. Applications

We now deal with several applications of Theorem 1.
3.1. On a result of Saphar

A result of Saphar [Sa] states that each operator T€ £(L(p),L,(#)),2<p<
o, is g-summing for ¢ > p. In this section we consider the limit case ¢ = p. For
doing this we recall r-stable random variables, 1 < r < 2. A random variable f is
said to be r-stable if its Fourier transform is equal to e~'*!". By (f;) we denote a
sequence of independent r-stable random variables defined on the interval [0,1]
with the Lebesgue measure. It is well known that

(L

where a, ; is a constant depending on r and s. This equation means that /" can be
isometrically embedded into L,[0,1] for 1 <5 < r < 2. Moreover,

s 1/s m 1/r
dt) =a,,s(2 |bk|’) forl<=s<r<2,
k=1

2 b fi(t)
k=1

mn 1/r
( 2 lfk(t)l’) dt = c(1 + logn)"'n'”,
0 k=1

where ¢ > 0 is a positive constant (cf. [M-P],[T]).

ProposITION 2. (i) Let 2 < p < o and let n be any natural number. Then for
all operators T € £(L,(n),Ly(v)) with rank(T) < n,

7,(T) < C,(1 + logn)! 7| T,

where C, is a constant depending only on p.
(ii) For 2 < p < o there exists a sequence of operators

T, € £(L,[0,1],1,) with rank(T,) < n
such that
7,(T,) = Cp(1 + logn)!~'? and |T,| <1,
where C, > 0 is a constant depending only on p.
Proor. (i) First we show for operators T € £(L,(n),15'),
7,(T) <2C(1 + logm)'~'?|T|,

where C is the constant of Theorem 1. Indeed, the p’-stable random variables pro-
vide a metric injection J from /[ into L,[0,1]. Thus Q := J’ defines a metric sur-
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jection from L,[0,1] onto /;'. By the metric lifting property of L,(u) we may
factorize each operator T as follows:

Lip) —— 1"

where T is an operator with | T'| < 2| T||. Applying Theorem 1 we infer

1(T) < | T|7,(Q) < 2| T| 7,(Q)
<2C|T| (1 +logm)!~"Px,,(Q).

Because of

T (Q) < | Qlap L2 7 = 1Y < 7o (L 1) = 1))
and
T (Il =2 1) =1

(cf. [K],[Pi],[T]) we get the desired inequality. Now let T€ £(L;(n),L,(»)) with
rank(7) < n. Put E, := T(L). Then dim E, < n and we have, for the operator
To:L\(p) — E, induced by T, that 7,(T) = n,(Tp) and |T| = | Tp|. By a result
of Schechtman [S] (cf. also Bourgain/Lindenstrauss/Milman [B-L-M]) we may
embed E, 2-isomorphically into an /;" with m < K(p)n'*#’2. Hence,

Wp(T) = ﬂ'p(TO) = ZTp(JnTO)a

where J, is the 2-isomorphic embedding from E,, into /;". By the first step of the
proof we conclude that

7, (JyTo) < 2C(1 + log m)' =2 | J, To|
<2C(1 +logm)'='?|T]|.
Therefore
7,(T) < 4C(1 + logm)'~'7||T}|.
From

log m < log K(p)n'*?"? < max(log K(p),p/2)(1 + log n)
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we finally get the desired estimate
7,(T) < C,(1 + logn)'~"?| T},

where C, < 4C(1 + max(log K(p),p/2))'""7.
For the proof of (ii) we follow a similar idea of Kwapien (cf. [T]). Let ( fi)i=,
be a sequence of independent p’-stable random variables. For each » we may find

gl(")a- .. ,g,(,"’ € L[0,1] such that

n

sup ) e ()P =1
te (0,1} 4=

and

1 n 1/p’ 1 n
( 2 |fk(t)|") di=|| 3 f(e () dt|.
0 k=1 0 k=1
Define operators A,:/,-— L,[0,1] and T,:L,[0,1] =/, by
n
Anx = Z (x:ek>fka X e Ip’,
k=1
and

T.f:= Y, f.egie, fE€L0,1],
k=1

respectively. Obviously,
|An:ly—>Li[0,11| sa,, and |T,:L,[0,1] =/, <1.

On the other hand we get

1 n 1/p’
cn'P (1 +logn)'? < f (Z lfk(t)l”') dt
0o \k=1

1 n n
= 3 f(DgPdt| = | 3 (S g™
0 k=l k=1
, n 1/p , n n 1/p
< ( 5 |<fk,g,£"’>|p) < nl% ( 5 |<fk,g,‘">>|ﬂ)
k=1 k=1 I=1

n 1/p
<nl» (Z [ T,,A,,ekll,‘,’> < n'"? 5, (T,An)
k=1

< n'"?x2,(T) | An) < n'P 7,(T)ay,,
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which yields the desired assertion (ii),
7,(T,) = ai (1 +logn)'~? and |T,| = 1. »
Pl

3.2. Inequalities between (q,p)-mixing and (r,p)-summing norms of finite
rank operators

Let 1 < p,q < . An operator T € £(E, F) from a Banach space E into a
Banach space F is said to be (g, p)-mixing if for all Banach spaces G and all op-
erators § € ®@,(F, G) the composition operator ST is p-summing. Put

Ba.p(T) :=sup{m,(ST): 7y (S) < 1].

Then the class [, 5, pgq,,] Of all (g, p)-mixing operators is a Banach ideal (cf.
[Pi], [D-F]). We now recall some properties about (g, p)-mixing operators, most
of which can be found at least implicitly in Maurey’s thesis [M2]. The theory of
these operators appeared in a condensed form in Pietsch [Pi] and Puhl {Pu] (see
also [D-F)).

By definition we obviously have

(M prtigp] =[£,0-]] forl<sg<p=< o,
and

[mw,psl"m,p] = [(Ppa Wp]; l=p=<oo,

Furthermore, if 1/r + 1/g = 1/p, then
[(pr,q’ 7rr,q] : [mq,p’ﬂq,p] < [(Ps,pa Ts,p]

forl <p<qg=<oandl/p—1/s=1/g— 1/r. The special case r = g, s = p comes
out from the definition. For our purposes we also need the following character-
ization: An operator T € £(E, F) is (g, p)-mixing iff for all C(K)-spaces, K a
compact Hausdorff space, all operators S € ®,.(C(K), E) the composition oper-
ator 79§ is ¢’-summing, and in this case

g, p(T) = sup{m, (TS): 7, (S) < 1}.
For p = 1 we have

[mq,l(C(K)’E)al‘q,l] = [(Pq’(C(K)’E)s ﬂ'q’] .
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The next result (again due to Maurey [M2]) shows that the (g, p)-mixing and (7, p)-
summing operators are closely related: Namely, if 1/r + 1/g = 1/p, then

(Mg pr g0 E[®rpy7,p] and @, My, fore>0.

It is natural to ask: what is the ratio between the (g, p)-mixing and (r, p)-summing
norm of finite rank operators in the “border case” e =0 and 1/r + 1/g = 1/p? We
prove the following statement, which is useful for investigating norms of tensor
product operators.

ProrosiTioN 3. Let 1 <p < g <o and 1/r+ 1/q = 1/p. Then for any natural
number n and any operator T € £(E, F) between arbitrary Banach spaces E and
F with rank(T) < n,

#ap(T) < C(1 + log n)x, ,(T),

where C is the numerical constant from Theorem 1.

Proor. Let S € @, (C(K),E) be an arbitrary p’-summing operator from a
C(K)-space into E. By Theorem 1 we have

7,(TS) = C(1 + log n)"m,.,(TS).
Using the above product formula
g (TS) < 7, p(T) pp,1(S), I/r+1/g=1/p
and
#p1 (S) < my(S)
we check
7 (TS) < C(1 + log n)am, ,(T) 7, (S).
Thus, the above characterization of (g, p)-mixing operators yields
pa.p(T) = sup{my (TS): 7w, (S) = 1} = C(1 + log n)x, ,(T)

for 1/r+ 1/q = 1/p. [ ]

REMARK. The factor (1 + log n)" in the inequality of Proposition 3 is asymp-

totically correct at least in the cases 1 = p < g< o and 1 < p < g < 2, respectively.
Indeed, if 1 = p < g < o, then the inequality of Proposition 3 reduces to the in-
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equality of Theorem 1 since p, ((T: C(K) = E) = 74 (T: C(K) — E). In the case
1 < p < g < 2 we have with a constant C,, , > 0,

oIl = 10) = Cp (1 +logn)'@ and  w,,(1,: 15 = 17) =1,

1/r + 1/qg = 1/p (see [Pi]). Yet we do not know whether the factor (1 + log n)'
is asymptotically correct in the remaining cases ] <p<2<g<owand2=<p<
g < oo, respectively.

3.3. Tensor products

Investigating tensor product operators between L,-spaces, Rosenthal and
Szarek [R-S] proved that for 1 < p< g <2,

t(p.q) = sup  |S® T:I7 ®q 17 -18 ®, 18] = Cpqe(l +logn)'a,
§8: 1210 <1
][T:g%»{f’,’}[sl

where C, , > 0 is a constant depending on p and g only. Here the norm on the
tensor product /; &, /; is the norm induced from 1;2. They conjectured that

ta(p,q) % (1 + log n)'4,

which will be answered in the positive. Our proof is based on the following inequal-
ity taken from [D-F] (which is a slight modification of a result in [C-D]).

LEMMA C. Letl<p,g=<oandlet S,T€ £(I7,l;). Then
IS® T:1f @, I = I ®p 21 = bo,p(S)piss (1)
Sforalll =5 < oo,
ProposiTION 4. Let 1 = p< g < 2. Then
t.(p,q) B (1 + logn)'4.
Proor. It remains to show the estimate from above. By Proposition 3 we have
pg oIt 12— 18) < C(1 + logm) A, (1,115 — 1)
for 1/r + 1/g = 1/p. Moreover, =, , < T, and
Tgallp:ly = 13) =1
(see [K], [Pi] or [T]) imply

pgp(Lp: il = 12) < C(1 + log n)"4.
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Choosing s = q in Lemma C we obtain
IS® T:05 ®q 15~ 15 ®plpl = 1g,p(8)tg o (T)
= 1TV g p(S) < ITNIS Vg pUnlg = 13)
< C(1 +logn)"| S} |T].
Hence
t.(p,q) = C(1 + log m)'%,

the desired estimate from above. [ |

3.4. Final remarks

In the study of (p, g)-summing norms of finite rank operators the following re-
finement of the definition is useful. Let 1 < g < p < o and let n be a positive in-
teger, 7rf,,”,,) (T) of an operator T € L£(E,F) is the smallest C = 0 such that for
arbitrary n-vectors x,,...,X, € E one has

1/q

n 1/p n
(£ 1ms17) = cm (3 ool
j=1 lal=1\ ;=)

The following inequality,
7p2(T) < 27, (T),

is due to Tomczak-Jaegermann for p = 2 and has been extended by Konig to p >
2 with a constant C, depending on p on the right-hand side of this inequality.
Szarek showed that the constant C, is independent of p. However, the final con-
stant v2 has recently been obtained by Defant/Junge [D-J] using a clever charac-
terization of (p,q)-summing operators as a quotient formula. Applying this
inequality we get from Theorem 1, according to the pattern of Tomczak-Jaeger-
mann [T], that

11\
(%) 7,(T) < C(E - 1—)) (1 +logn)'~Px{(T),  p>2

for rank n operators from a C(K)-space. In the limit case p = 2 we even get an im-
provement of Jameson’s result

72(T) = C(1 + logn)"2x"(T)
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which is a consequence of Tomczak-Jaegermann’s inequalities
mo(T) < V2x{"™(T)
and
w"™(T) < C(1 + log 1) m (D),

hence it is due to Tomczak-Jaegermann [T]. Finally, we should mention that in the
case 2 < p < oo we may also give an alternative proof of the inequality (%) using
Maurey’s result and the recent result of Defant/Junge [D-J] instead of Lemma B.
Namely, for rank n operators from C(K), the inequality (*) follows by combin-
ing the inequalities

1 1 —-1/r
m(T) < g(— - ~) 7 2(T), 2=<r<p<om (Maurey),
p\r p
7,2(T) = 2x5(T), 2<r<o (Defant/Junge),
7 5(T) < nV=VPr (T, 2<r<p<o  (Hoélder’s inequality),
1\~
xyN(T) < % <% - —) x{"N(T), 2<p< (Maurey, Tomczak-
p Jaegermann),

and by choosing again an appropriate r, 1/r = 1/p + (1/2 — 1/p)(1 + log n)~!,
similar as in the proof of the main theorem. However, we do not know whether
the inequality (*) remains valid for 1 < p < 2.
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